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Agenda

e Overview of ScalaIOTrace

e Probabilistic Tracing and Replay (ICPP11)

e Communication Extrapolation of Traces (PPoPP'11)

e Generation of Executable Specifications from Traces (ICS'11)
e Automatic Benchmark Code Generation from Traces



Introduction

e Contemporary HPC Systems
— Size > 1000 processors
— take IBM Blue Gene: ~74k nodes, ~300k cores

e Challenges on HPC Systems (large-scale scientific applications)
— Communication & I/0 scaling (MPI)
— Communication & I/0 analysis

e Procurements require performance prediction



Communication Analysis

Existing approaches and short comings

e Source code analysis
+ Does not require machine time
- abstr. level: apps complex, no dyn. info

e Lightweight statistical analysis (mpiP)
+ Low instrumentation cost
- only aggregate information
e Slicing
+ Fast
- lacks temp. info

e Performance Modeling
+ Abstract, somewhat general
- only high-level stats, arch.-dependent

e Fully captured (lossless): Vampir, VNG
+ Full trace available for offline analysis
- not scalable (n traces) / need viz cluster
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ScalaTrace: Lossless & Scalable Tracing

e Traces communication + I/0 of MPI codes via interpositioning

e Trace size: Near constant size, one file represents all nodes

— Intra-node (loop) & inter-node (task ID) compression of
SPMD codes - preserves program structure

— Location-independent encoding > scales
-E.g., <10, MPI_Irecv(LEFT), MPI_lsend(RIGHT)>
— Communication group encoding
—<dim start_rank iteration_length stride {iteration_length stride}>

e Preserves timing for computation & communication (histograms)
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ScalalOTrace: Multi-level 1/0 Capture (ICPP’11)

e Collect IO-traces at

o MPI-IO layer' Application
- PMPTI / Umpire (library) HDE
—  POSIXI/O R
- gcc interposition (recompile) OSIX 10
e Replay I/0
Kernel

—  Ability to replay MPI-IO calls
e Automated Trace Analysis
—  Customized replay

—  Adds generic event handlers for trace
analysis

—  Future: Off-line analysis w/o replay
(on your laptop)



/O Trace Collection

e Use ScalaTrace for lossless I/0 tracing

e Collect MPI-IO (higher level) and POSIX I/O (lower level) traces
— Expose multiple layers
— Enable analysis of multi-level traces in a scalable way

e Scalable I/0 Tracing:
— File name compression
— collective I/0O - file offsets, patterns <start, stride, #elem>
— file handles, custom data types = opaque pointers (buffered)

e MPI I/O: PMPI wrappers, POSIX I/O: Gnu -wrap



ScalalOTrace and Replay: Trace Sizes

FlashlO: Perfect compression (HDF5) POP: 2 orders magn. less (NetCDF)
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Histogram Based Trace Collection

e Problem: Parameter mismatch - no compression > not scalable
e Solution: Histograms of multiple bins > lossy but scalable

e target precision level [%] - user specified

e If events match > collect lossless traces

e Else if difference of values < precision level 2> histogram
— Bin value ranges dynamically adjusted



Deterministic Trace Replax

e Replay = "what-if" analysis, check correctness, ...

e Lossless Trace Replay
— Each node: reads its own events, reissue MPI&I/O calls
— No trace decompression, dummy data (msgs, file data), A time

e Challenges in histogram-based trace replay

— Uncoordinated selection of statistical comm. end-
points/trace volume can lead to deadlock

— Needs distributed, orchestrated replay
— All nodes: read entire trace events, agree on values
— E.g. Send Op: Sender calls Send(), receiver calls Irecv()
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POP - Histogram-based trace size

e Histogram based traces:
— Only sub-linear increase in trace size
— 2 orders of magnitude smaller than lossless trace
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POP - Histogram-based Trace Replay

e Replay time within 5% of original time till 512 nodes (except 128)
e Replay time within 12% for 1024/2048
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Scalable Comm. & I/O Tracing (Summary)

e Aggressive trace compression
— Near constant size trace file for Flash I/0, CG
— Only sub-linear increase for POP

e Capability to record traces at several layers
e Replay of histogram traces within 10% -15% of orig. time
e Framework for post-mortem trace analysis
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Communication Extrapolation (PPoPP’11)

e Motivation
— Communication analysis at scale - without running app!
— Modeling for procurements
— Extrapolation on a single workstationl!

e Idea: synthetically generate communication traces:

— k small traces from app = large traces
— E.g., P=8,16,32,64 nodes trace > P=4096 trace (or any P)

e Replay large trace/analyze it

e Chadllenges:
— Topology detection
-Meshes/stencils
— Message payloads
-Gaussian elimination
— Time extrapolation
-Curve fitting




Accuracy of Timing Extrapolation (i)

e for NPB: BT, EP, FT, IS, CG

e up to 16k nodes (not cores)

e t(extrapolated replay) = t(app)

e Accuracy = |Replay Time - App Time|/App Time) > generally>90%
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Extrapolation (Summary)

Contributions:

e Algorithms & techniques for comm. extrapolation, handles
— trace events
— execution times

Extrapolation

| not so elusive
e Extrapolation shown to be anymore

— correct
— accurate

e Based on app runs at smaller scale

e Obtains comm. behavior of parallel app at arbitrary scale
— without actual execution at this scale > unprecedented

e Future Work:
— Weak scaling
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Communication Benchmark Generation (ICS’11)

e Goal: Generate comm. benchmarks from apps that are
— easy to 1) distribute, 2) use, 3) modify

e Extracted benchmarks from applications are
— Performance-accurate
— Application logic is stripped out
— Readable, portable, modifiable
- Collectives are consolidated
- Nondeterminism has been eliminated

e Target coNCePTual: language for rapid generation of network
benchmarks

e Compiler + runtime librar

for(i= 0; i< 10; i++){ For 10 repetitions {
MPI_Irecv(10, LEFT); All tasks t asynchronously send a
MPI_TIsend(10, RIGHT); 10-byte message to task t+1 then
MPI_Waitall(); all tasks await completion

} }
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Code Generation from Application Trace

Application >  Application Trace >  Benchmark in coNCePTualL

MPI_Tnit(); RSDI:
funcl();
for(i = 0; i< 10; i++){ PRSDI:
func2();
MPI_Irecv(LEFT); RsSD2:
func3();
MPI_Isend(RIGHT); RSD3:
func4();
MPI_Waitall(); RSD4:
}
funch(); RSD5:
MPI_Barrier(); RSD6:

MPI_Finalize();

<All, Init> All tasks compute for T1 seconds

T1 For 10 repetitions{

<10, RSD2, RSD3, RSD4> All tasks compute for T2 seconds

T2 All tasks t asynchronously receive an x-byte
<All, Irecv, LEFT> message from task t-1 then

T3 All tasks compute for T3 seconds

<All, Isend, RIGHT> All tasks t asynchronously send an x-byte
T4 message to unsuspecting task t+1 then
<All, Waitall> All tasks compute for T4 seconds

T5 All tasks await completion

<All, Barrier> }

<All, Finalize> All tasks compute for TS seconds

All tasks synchronize

o All comm. events & computation times generated

e Benchmark contains loop structure
- easier to read/modify than translation to straight-line code

e Contributions: consolidate collectives, eliminate non-determinism



Accuracy of Generated Timings

e Time the application and the generated benchmark, and compare
the results

e Mean absolute percentage error is only 2.9% > formula:
| TcoNCePTual - Tapp|/Tapp x 100
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Accuracy of Generated Timings

e Time the application and the generated benchmark, and compare
the results

e Mean absolute percentage error is only 2.9% > formula:
| TcoNCePTual - Tapp|/Tapp x 100

B App Time McoNCePTual Time

= = MNMNOW
QO v O v O v O

Running Time (s)

16 32 64 128 256

Number of Nodes

Sweep3D: Weak Scaling
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Applications of the Benchmark Generator

e Determine limits of computation/comm. overlap or effect of
computational acceleration (e.g., GPUs)

— Experiment: ARC cluster, 64 cores, Ethernet, BT b'mark
— Shorten the spin times gradually
~-100%: original compute overhead (simulated w/ spin)
-0%: no compute overhead - infinitely fast processor

* Best speedup: ~3X _. 500
- overall runtime reduced @ 450
by 22% £ a0 N
Yy eclo w
. . £ 350
* 0%: network contention or 30
extra memory copies T 0 10 20 30 40 50 60 70 80 90100
O
. Pla’rform-specific I"CSLIH' a Computation Time (% of Original)
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Execution Time (s)

(3) C Benchmark Generation

e time from Init > Finalize for app and benchmark
| Tgen - Tapp|/Tapp x 100

e Timing accuracy = ~ 6.7% (avg. error)
e ARC cluster (1,7k cores, 16 cores/node Opteron, 32 GB RAM)
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Execution Time (s)

Cross Platform Results: ARC vs. Jaguar

e Jaguar ~23% faster execution on compute kernels

e Resemblance to benchmark obtained on ARC

— IS: strong scaling reduced per node work
- close match @ 256 tasks

— Nearly perfect match after 23% speed correction
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Summary

e Scalable Comm & I/0 tracing is realistic
e Trace extrapolation feasible - exascale modeling

e An automatic communication benchmark generation framework
— ScalaTrace = coNCePTual or C

e Generate benchmarks from real-world apps: comm. & I/0
— Ensure performance fidelity, abstract away application logic
— Readable, portable, modifiable, reproducible
-Consolidation of collectives
-Elimination of nondeterminism
— Obfuscates code - for restricted source code access
— Facilitate "what-if" analysis
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